[1]-(a)[8 pts] Find Laplace transform of the following functions

$$
f(t)=e^{3 t} \sinh 4 t, \quad h(t)=\int_{0}^{t}(t-u) e^{3 u} d u
$$

(b) [4 pts] If $L\{f(t)\}=F(s)$, prove that

$$
L\left\{f^{\prime \prime \prime}(t)\right\}=S^{3} F(s)-\sum_{k=0}^{2} S^{k} f^{(2-k)}(0)
$$

(c) [8 pts] Find the inverse laplace transform of the following functions

$$
F_{1}(s)=\frac{s}{s^{2}+13 s+9}, \quad \quad F_{2}(s)=\frac{s e^{-\pi s}}{s^{2}+4}
$$

(d) $[10 \mathrm{pts}]$ Use the method of Laplace transforms to solve the given boundary value problem

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)=f(t), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

[2]-(a) [6 pts] Set up the appropriate form of a particular solution y_{p} (Undetermined Coefficients), but DO NOT determine the values of the coefficients

$$
y^{\prime \prime}+2 y^{\prime}-3 y=f(x)
$$

where

$$
\text { 1. } f(x)=(5+x) e^{-3 x}+333 e^{x}
$$

$$
\text { 2. } \quad f(x)=(\sin 3 x)^{-1}
$$

(c) [4 pts] Write a general solution for the homogeneous differential equation with constant coefficients whose auxiliary equations is

$$
(r+5)^{3}(r-2)^{2}\left(r^{2}+1\right)^{2}=0
$$

(d) $[15 \mathrm{pts}]$ Solve by any method

1. $y^{\prime}=\frac{y^{2} x^{2}}{1+x}$
2. $x y^{\prime}=-y+\sqrt{x y+1}$
3. $y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}-3 y=0$
4. Given the function $\varphi(x, y)=e^{x^{2} y}$ and the point $p=(2,0)$.
(a) $[5 \mathrm{pts}]$ Show that:

$$
\begin{aligned}
& x \varphi_{x}+y \varphi_{y}=3 x^{2} y \varphi \\
& x^{2} \varphi_{x x}+2 x y \varphi_{x y}+y^{2} \varphi_{y y}=3 x^{2} y\left(3 x^{2} y+2\right) \varphi
\end{aligned}
$$

(b) [5 pts $]$ Expand $\varphi(x, y)$ in a Taylor series about the point p.
(c) $[5 \mathrm{pts}]$ Use the results obtained in part (b) to get the following at the point p :
i. The equation of the normal line to $\varphi=$ constant.
ii. The equation of the Tangent plane to $\varphi=$ constant.
iii. The gradient of φ.
iv. The maximum rate of change and its direction.
v. $\frac{d y}{d x}$ by applying the implicit differentiation rule to $\varphi(x, y)=1$.
(d) [5 pts] Let $x=t, y=s^{2}-t$. Applying the chain rule to evaluate φ_{s}, φ_{t} and $\varphi_{s t}$. Use your results to show that $\left(2 s^{2}-3 t\right) \varphi_{s}=2 s t \varphi_{t}$.
(e) $[5 \mathrm{pts}]$ Find the extreme values of φ on the region $R: x^{2}+\frac{y^{2}}{3} \leq 1$.
(f) $[5 \mathrm{pts}]$ Evaluate $\int_{0}^{\infty} \int_{1 / y}^{2 / y} \frac{x^{2}}{\varphi(x, y)} d x d y$.
(g) [5 pts] Given that $I=\int_{1}^{\infty} \frac{e^{-x^{2}}}{x} d y=c$, where c is known constant. Find $I=\int_{\frac{1}{\sqrt{y}}}^{\infty} \frac{1}{x \varphi(x, y)} d x$.
4. Consider the vector field $F=y z i-x z j+3 z^{2} k$ and the volume $R: z \leq 5-x^{2}-y^{2}$, $z \geq 1$.
(a) [5 pts] Verify Green's theorem for the vector field F and the lower surface of R.
(b) [10 pts] Verify Stokes' theorem for the vector field F and the upper surface of R.
(c) [10 pts $]$ Verify Gauss' theorem for the vector field F and the volume R.

