Mansoura University Faculty of Engineering Department of Engg. Math. and Phys. First year Math(3)

د (ابراهیم (حوص)

L. EL GL

First Semester 25-12-2010 Time: 3 hr Full mark(110)

1

enally 13

[1]-(a)[8 pts] Find Laplace transform of the following functions

$$f(t) = e^{3t} \sinh 4t, \qquad h(t) = \int_0^t (t-u) \ e^{3u} du.$$

(b) [4 pts] If $L \{f(t)\} = F(s)$, prove that

$$L\{f'''(t)\} = S^3 F(s) - \sum_{k=0}^{2} S^k f^{(2-k)}(0).$$

(c)[8 pts] Find the inverse laplace transform of the following functions

$$F_1(s) = \frac{s}{s^2 + 13s + 9},$$
 $F_2(s) = \frac{s e^{-\pi s}}{s^2 + 4}.$

(d) [10 pts] Use the method of Laplace transforms to solve the given boundary value problem

y''(t) + 2y'(t) + y(t) = f(t), x(0) = 0, x'(0) = 0.

[2]-(a) [6 pts] Set up the appropriate form of a particular solution y_p (Undetermined Coefficients), but DO NOT determine the values of the coefficients

where 1.
$$f(x) = (5+x)e^{-3x} + 333e^x$$
, 2. $f(x) = (\sin 3x)^{-1}$

(c) [4 pts] Write a general solution for the homogeneous differential equation with constant coefficients whose auxiliary equations is

$$(r+5)^3 (r-2)^2 (r^2+1)^2 = 0.$$

(d) [15 pts] Solve by any method

1.
$$y' = \frac{y^2 x^2}{1+x}$$

2. $x y' = -y + \sqrt{xy+1}$
3. $y''' + 3y'' - y' - 3y = 0$

1

- 3. Given the function $\varphi(x, y) = e^{x^2 y}$ and the point p = (2,0).
 - (a) [5 pts] Show that: $\begin{aligned} x\varphi_x + y\varphi_y &= 3x^2y\varphi, \\
 x^2\varphi_{xx} + 2xy\varphi_{xy} + y^2\varphi_{yy} &= 3x^2y(3x^2y + 2)\varphi. \end{aligned}$
 - (b) [5 pts] Expand $\varphi(x, y)$ in a Taylor series about the point p.
 - (c) [5 pts] Use the results obtained in part (b) to get the following at the point p:
 - i. The equation of the normal line to $\varphi = constant$.
 - ii. The equation of the Tangent plane to $\varphi = constant$.
 - iii. The gradient of φ .
 - iv. The maximum rate of change and its direction.
 - **v**. $\frac{dy}{dx}$ by applying the implicit differentiation rule to $\varphi(x, y) = 1$.
 - (d) [5 pts] Let x = t, $y = s^2 t$. Applying the chain rule to evaluate φ_s , φ_t and φ_{st} . Use your results to show that $(2s^2 3t)\varphi_s = 2st\varphi_t$.
 - (e) [5 pts] Find the extreme values of φ on the region $R: x^2 + \frac{y^2}{3} \le 1$.
 - (f) [5 pts] Evaluate $\int_0^\infty \int_{1/y}^{2/y} \frac{x^2}{\varphi(x,y)} dx dy$.
 - (g) [5 pts] Given that $I = \int_{1}^{\infty} \frac{e^{-x^2}}{x} dy = c$, where c is known constant. Find $I = \int_{\frac{1}{\sqrt{y}}}^{\infty} \frac{1}{x\varphi(x,y)} dx$.
- 4. Consider the vector field $F = yzi xzj + 3z^2k$ and the volume $R: z \le 5 x^2 y^2$, $z \ge 1$.
 - (a) [5 pts] Verify Green's theorem for the vector field F and the lower surface of R.
 - (b) [10 pts] Verify Stokes' theorem for the vector field F and the upper surface of R.
 - (c) [10 pts] Verify Gauss' theorem for the vector field F and the volume R.

I. A. El-Awadi

e plan